Navigation
Public engagement

Virus Fighter

Build a virus or fight a pandemic!

Play online

Maya's Marvellous Medicine

Read online for free

Print your own copy

Battle Robots of the Blood

Read online for free

Print your own copy

Just for Kids! All about Coronavirus

Read online for free

Print your own copy

Archive
LabListon on Twitter

Entries in Liston lab (226)

Friday
Dec032021

Responding to the COVID crisis

As well as exposing weaknesses in healthcare systems and supply chains, the coronavirus pandemic has underscored the importance of fundamental research and collective effort. During 2020, scientists rose to the challenge of developing new vaccines and effective treatments for Covid-19. Institute immunologists Dr Michelle Linterman and Professor Adrian Liston describe how their labs responded and the lessons we must learn.

 

In the early days of the coronavirus pandemic, as lockdowns loomed, workplaces closed and travel slowed to a trickle, Dr Michelle Linterman was certain of one thing – she wanted to make her group’s expertise available to the global vaccines effort.

 

Among those working on a vaccine against SARS-CoV-2 (the coronavirus that causes Covid-19) was Dr Teresa Lambe at the Jenner Institute in Oxford. “I already knew Tess, so once it became clear they had a vaccine candidate, my first instinct was to ask her what we could do to help,” Linterman recalls.

As an immunologist, Linterman’s work focuses on how the immune system responds to vaccines. In particular, she wants to understand why older people respond less well to vaccines, something she studies using human vaccination studies and in aged mice. “I thought the most useful thing was for us to offer something that nobody else could contribute quickly – and that was our ability to use aged mice as a pre-clinical test of how this vaccine is likely to work in an ageing immune system,” she says.

 

Quote

When Lambe said yes, Linterman set up trials to compare immunological responses to the Oxford/AstraZeneca vaccine in young and aged mice, and discovered that although aged mice responded more poorly than young mice to a single dose, after two doses of the vaccine, the immune responses were very good in both groups.

 

The study helped both institutes. For the Jenner, it showed two doses of the vaccine would give good protection against infection in all adults. For Babraham, it provided new insights into vaccine responses at a cellular and molecular level, expanded research into new vaccine platforms and led to new collaborations. Most importantly, it illustrated the value of publicly-funded research.

 

“Because we’re funded by the BBSRC – in other words the tax payer – it was incredibly important to use our knowledge and expertise to contribute to vaccine development in the midst of the pandemic,” she says.

 

Fellow immunologist Professor Adrian Liston also stepped up to the mark, using his research to help clinicians make the best treatment choices for Covid-19 patients and his communication skills to provide accurate information to journalists and the public.

 

“We need to develop good systems for treating emerging viruses before we know much about them, which is something my lab is working on,” explains Liston. “We are coming up with treatments that are vaccine agnostic, treatments that will work for most viruses with the potential to become pandemic, regardless of the actual virus.”

 

Liston’s group is also interested in systems immunology – exploring what makes people’s immune systems so different from each other.

 

Quote

 This variation has been graphically illustrated during the pandemic, some people experiencing mild symptoms while others died. “Diversity is intrinsically important to the immune system. It’s the most genetically-diverse system in the human body, and there are other factors at play, such as age, gender and weight,” he explains.

 

Being so close to events has taught Liston and Linterman many lessons – lessons, they say, that are vital for political leaders to learn. First, zoonoses (diseases spread between animals and humans) with pandemic potential are far from rare events. “They occur every couple of years,” says Liston. “We’ve had coronavirus outbreaks before, like SARS and MERS; they happen like clockwork. In the previous outbreaks we had better luck and better preparation. These are things we must prepare for.”

 

Secondly, we must guard against complacency. “If we pat each other on the back for a job well done, and then slash science budgets, the next outbreak will be as bad as this one,” he warns. “We must fund surveillance as well as immunology and virology research, because if you scale down this science it takes a decade or more to rebuild that intellectual capital.” This preparation extends to supporting fundamental research in a broad range of areas. “We need to fund fundamental research because you’re never sure which bit of it will save you in the future,” says Linterman.


 Third, a global approach to research, and funding to support this, is essential, because scientific discoveries are not bounded by borders, adds Linterman: “One of the reasons the Oxford vaccine was developed so fast was because of years of work on Ebola and MERS using the same adenoviral vaccine vector.”

 

As vaccines are rolled out, and countries emerge from lockdown, we might usefully reflect on what we would have done without a vaccine. It’s a scenario that frightens Linterman. “There wasn’t another exit strategy,” she says. “The vaccines are great, far better than we expected. But there are pathogens that we don’t have good vaccines for. For me, that’s the scary thing. We’re lucky the vaccines are so effective – but that doesn’t mean the same will be true for the next pandemic.”

 

This feature was written by Becky Allen for the Annual Research Report 2019-2020.

Thursday
Dec022021

Wednesday
Dec012021

Public Engagement award for the VirusFighter team

Congratulations to the VirusFighter team for winning the Babraham Institute Public Engagement Award! VirusFighter is the reincarnation of VirusBreak. Over the last year I've worked with the PhD students in our lab, Amy Dashwood, Ntombizodwa Makuyana and Magda Ali, together with lab alumni David Posner, to create missions for VirusFighter - allowing the player to be Prime Minister of the UK during different virus outbreaks. GameDoctor created the interface, with liason via the PE team here at the Babraham Institute.

Congrats to Amy, Tombi, Magda and David - a huge contribution to scientific communication, and all during the first year of their PhDs!

 

Saturday
Oct092021

Congratulations to Ntombizodwa Makuyana

Congratulations to Ntombizodwa Makuyana, for winning the Babraham Institute prize for best poster by a first year PhD student!

A great start to a high potential PhD!

Saturday
Oct092021

Saturday
Jul242021

New understanding of cell stability with potential to improve immune cell therapies

Researchers identify the origin of potentially dangerous unstable cells

Key points:

  • Researchers have identified the origin of unstable cells, with potential to improve the safety of immune cell therapies.
  • When using immune cells to treat disease, there is a risk that the cells switch from protective to destructive behaviour.
  • Studies in mice have allowed researchers to identify the cells most at risk of becoming harmful.

By purifying cells using markers of instability, or following a two-step purification process, the researchers are able to produce a robust set of protective cells. Research in mice, published today by researchers at the Babraham Institute, UK and VIB-KU Leuven, Belgium, provides two solutions with potential to overcome a key clinical limitation of immune cell therapies. Cell therapy is based on purifying cells from a patient, growing them up in cell culture to improve their properties, and then reinfusing them into the patient. Professor Adrian Liston, Immunology group leader at the Babraham Institute, explained: “The leading use of cell therapy is to improve T cells so that they can attack and kill a patient’s cancer, however the incredible versatility of the immune system means that, in principle, we could treat almost any immune disorder with the right cell type. Regulatory T cells are particularly promising, with their ability to shut down autoimmune disease, inflammatory disease and transplantation rejection. A key limitation in their clinical use, however, comes from the instability of regulatory T cells – we just can’t use them in cell therapy until we make ensure that they stay protective”. By identifying the unstable regulatory T cells, and understanding how they can be purged from a cell population, the authors highlight a path forward for regulatory T cell transfer therapy. The study is published today in Science Immunology.

T cells come in a large variety of types, each with unique functions in our immune system. “While most T cells are inflammatory, ready to attack pathogens or infected cells, regulatory T cells are potent anti-inflammatory mediators”, Professor Susan Schlenner, University of Leuven, explains. “Unfortunately this cell type is not entirely stable, and sometimes regulatory T cells convert into inflammatory cells, called effector T cells. Crucially, the converted cells inherit both inflammatory behaviour and the ability to identify our own cells, and so pose a significant risk of damage to the system they are meant to protect.”

The first key finding of this research shows that once regulatory T cells switch to becoming inflammatory, they are resistant to returning to their useful former state. Therefore, scientists need to find a way to remove the risky cells from any therapeutic cell populations, leaving behind the stable regulatory T cells. By comparing stable and unstable cells the researchers identified molecular markers that indicate which cells are at risk of switching from regulatory to inflammatory. These markers can be used to purify cell populations before they are used as a treatment.

In addition to this method of cell purification, the researchers found that exposing regulatory T cells to a destabilising environment purges the unstable cells from the mixture. Under these conditions, the unstable cells are triggered to convert into inflammatory cells, allowing the researchers to purify the stable cells that are left. “The work needs to be translated into human cell therapies, but it suggests that we might be best off treating the cells mean”, says Professor Adrian Liston. “Currently, cell culture conditions for cell therapy aim to keep all the cells in optimal conditions, which may actually be masking the unstable cells. By treating the cultures rougher, we may be able to identify and eliminate the unstable cells and create a safer mix of cells for therapeutic transfer”. Dr Steffie Junius, lead author on the paper, commented: “The next stage in the research is to take the lessons learned in mice and translate them into optimal protocols for patients. I hope that our research contributes to the improved design and allows the development of effective regulatory T cell therapy."

Establishing a thorough process to improve cell population stability in mice helps to lay the groundwork for improved immune cell therapies in humans, although the methods described in this work would require validation in humans before they were used in cell therapy trials. Tim Newton, CEO of Reflection Therapeutics, a Babraham Research Campus-based company designing cell therapies against neuro-inflammation and independent from the research, commented on the translational potential of the study: "This research makes a significant impact on regulatory T cell therapeutic development by characterising unstable subsets of regulatory T cells that are likely to lose their desirable therapeutic qualities and become pro-inflammatory. The successful identification of these cells is of great importance when designing manufacturing strategies required to turn potential T cell therapeutics into practical treatments for patients of a wide range of inflammatory disorders."

Read the full paper here.

Saturday
Jul032021

Tuesday
Jun012021

Congratulations Dr Steffie Junius!

Congratulations Dr Steffie Junius, for achieving a successful PhD! Steffie has just completed an ambitious graduate program, studying the plasticity and fragility of regulatory T cells. It has been a pleasure watching Steffie grow into a successful scientist. Like every PhD, it had its ups and downs, its challenges and highlights, and I'm incredibly proud of how Steffie handled the entire process. I just wish I could have been there in person to celebrate her big day!
Dr Junius is now moving on to an exciting position as post-doctoral researcher at Janssen. Her major thesis work on regulatory T cell plasticity will hopefully come out soon - it is an elegant study with major implications for the design of cell therapy approaches using regulatory T cells. Well done Steffie!
Wednesday
May122021

Immunology expert Prof Adrian Liston elected Fellow of the Academy of Medical Sciences

  • Professor Adrian Liston is one of 50 new researchers elected as Fellows of the Academy of Medical Sciences.
  • Candidates’ scientific achievements are peer reviewed, with successful researchers selected based on their contribution to advances in human health and welfare.
  • In a career spanning continents and disciplines, Prof Liston’s key scientific findings have expanded our understanding the human immune system as it interacts with our own bodies during health and disease.

Professor Adrian Liston, Senior Group Leader in the Immunology programme, has been elected a Fellow of the Academy of Medical Sciences for his pioneering research in immunology and neuroimmunology. Fellows of the Academy of Medical Sciences are elected for exceptional contributions to the medical sciences either in the form of original discovery or of sustained contributions to scholarship.

Professor Dame Anne Johnson, President of the Academy of Medical Sciences, said: “I am truly delighted to welcome these 50 new Fellows to the Academy’s Fellowship, and I offer my congratulations to each of them on their exceptional contribution to biomedical and health science. The knowledge, skill and influence that each brings to the Fellowship is the Academy’s most powerful asset.”

Commenting on his election, Prof. Liston said: “This is a really wonderful recognition of the quality of the science being run by my team here at the Institute. I am honoured to work with the best team of immunologists around, always willing to explore new fields and push the boundaries forwards.”

Prof. Liston’s work at the Institute explores uncharted areas of immunology with large implications for human health. The current research interests of the lab include working to shed light on the interactions between the immune system and the brain, and to learn more about how immune cells adapt and operate in different tissues around the body.

Exciting recent findings include that brain-resident T helper cells act to support the development of microglia and that the presence of these cells in the brain is essential for normal brain development in mice. These findings open up avenues of investigation that may help to drive the development of new therapeutics for neurological injuries like stroke and traumatic brain injury, and raise intriguing questions about the role of immune cells in information transfer between the body and the brain.

Prof. Liston’s expertise in immune system profiling has been applied to understand the factors that shape our immune system; looking at the factors that drive immune system variation between individuals, applying machine-learning and immune-profiling to improve the diagnosis of juvenile idiopathic arthritis in children, and a small-scale study to dissect the immune characteristics of severe COVID-19 responses.

“I am delighted to congratulate Adrian on his election as Fellow of the Academy of Medical Sciences,” said Dr Martin Turner, Head of the Immunology research programme, “Adrian’s work has been pivotal in increasing our understanding of autoimmunity and T cell populations, his recognition by the Academy is well deserved. Since joining the Institute, Adrian has proved himself to be an excellent leader, facilitating the international exchange of ideas, and promoting shared practices and values between his labs.”

Prof. Liston joined the Babraham Institute in 2019, after 10 years of running a research laboratory in Belgium. His team has expertise in cellular immunology, neuroimmunology, diabetes, immunodeficiency and systems immunology, and the team takes a creative and multidisciplinary approach to extending our understanding of the immune system.

After gaining his PhD with Professor Chris Goodnow at the Australian National University studying T cell tolerance and diabetes, Prof Liston moved on to study regulatory T cells with Professor Sasha Rudensky at the University of Washington before starting his own lab at VIB in 2009. Prof. Liston has produced over 180 publications with over 10,000 citations and has been awarded two ERC grants, the Eppendorf Prize and a Francqui Chair, among other honours.

Beyond academic publications, Prof. Liston also works to engage a wider audience with his research, in particular the importance of vaccination to protect health. In 2020, he published two children’s books, ‘Battle Robots of the Blood’, and ‘All about Coronavirus’ to explain the coronavirus pandemic in an accessible way to children. He has also drawn on his own experience to offer advice to early career researchers looking to advance in academia.

A celebratory event in July will bring the Academy’s new Fellows together for a virtual induction and a series of talks from new members.

Tuesday
Apr132021

Postdoc job opportunity in the lab

Happy to say we have a great job opportunity to join our lab! The position is for a bioinformatics or datascience postdoc position, starting in the Babraham Institute. The position is to lead the data analytics of the Eximious Horizon2020 project. An amazing opportunity to unravel the real-world link between environment and immunity, using the largest and most comprehensive datasets to yet be generated. I welcome applications from thoughtful scientists willing to learn the biology and search for the most appropriate computational tools to apply. Time is provided to learn and develop new skills, so consider applying even if you don't perfectly align to the project. Come join us in Cambridge! 

Apply here